Agrophysiologie du pois protéagineux

Agrophysiologie du pois protéagineux

INRA 147, rue de l'Université 75338 Paris cedex 07 UNIP 12, avenue Georges V 75008 Paris

ARVALIS – Institut du végétal 3, rue Joseph et Marie Hackin 75116 Paris ENSAM 2, place Viala 34060 Montpellier cedex 01

avec la collaboration de la FNAMS et de l'ESA d'Angers

© INRA, ARVALIS-Institut du végétal, UNIP, ENSAM, 2005

ISBN (INRA): 2-7380-1182-9 ISBN (ARVALIS-Institut du végétal): 2-86492-679-2 ISSN: 1144-7605

Le code de la propriété intellectuelle du 1^{er} juillet 1992 interdit la photocopie à usage collectif sans autorisation des ayants droit. Le non respect de cette disposition met en danger l'édition, notamment scientifique. Toute reproduction, partielle ou totale, du présent ouvrage, est interdite sans autorisation de l'éditeur et du Centre français d'exploitation du droit de copie (CFC), 20 rue des Grands Augustins, 75006 Paris.

Agrophysiologie du pois protéagineux

Ouvrage coordonné par :

Nathalie Munier-Jolain, Véronique Biarnès, Isabelle Chaillet, Jérémie Lecoeur, Marie-Hélène Jeuffroy

avec la collaboration de:

Benoît Carrouée, Yves Crozat, Lydie Guilioni, Isabelle Lejeune, Bernard Tivoli

MIEUX COMPRENDRE

Les soutiens à l'agriculture

Théorie, histoire, mesure J.P. BUTAULT, éd. 2004, 316 p.

Viruses and virus diseases of *Poaceae* (*Gramineae*)

H. Lapierre, P.A. Signoret, ed. 2004, 890 p.

Les rongeurs de France

Faunistique et biologie H. Le Louarn, J.P. Quéré 2003, 260 p.

Quantitative genetics and breeding methods in autopolyploid plants

A. GALLAIS 2003, 516 p.

Principes des techniques de biologie moléculaire

2º édition revue et augmentée D. TAGU, C. MOUSSARD (éds.) 2003, 180 p.

Éléments de génétique quantitative

2e édition revue et augmentée L. OLLIVIER 2002, 184 p.

Génie génétique

Une histoire, un défi E. HEBERLE-BORS trad. M.L. SPIRE, R. JUDOR 2001, 304 p.

L'eau dans l'espace rural

Vie et milieux aquatiques A. Neveu, C. Riou, R. Bonhomme, P. Chassin, F. Papy (éd.) 2001, 300 p.

Principes de virologie végétale

Génome, pouvoir pathogène, écologie des virus S. ASTIER, J. ALBOUY, Y. MAURY, H. LECOQ 2001, 488 p.

Le grain de blé

Composition et utilisation P. FEILLET 2000, 310 p.

Biology of lactation

J. MARTINET, L.-M. HOUDEBINE, H.H. HEAD 1999, 686 p.

Sol: interface fragile

Pierre STENGEL et Sandrine GELIN 1998, 222 p.

Les marqueurs moléculaires en génétique et biotechnologies végétales

Dominique DE VIENNE 1998, 200 p.

Assimilation de l'azote chez les plantes

Aspects physiologique, biochimique et moléculaire Jean-François MOROT-GAUDRY (éd.) 1997, 422 p.

L'eau dans l'espace rural

Production végétale et qualité de l'eau C. RIOU, R. BONHOMME, P. CHASSIN, A. NEVEU, F. PAPY (éd.) 1997, 414 p.

La pomme de terre

P. ROUSSELLE, Y. ROBERT et J.C. CROSNIER (éd.) 1996, 640 p.

Vie microbienne du sol et production végétale

Pierre DAVET 1996, 380 p.

Nutrition des ruminants domestiques

R. Jarrige, Y. Ruckebush, C. Demarquilly, M.-H. Farce et M. Journet (éd.) 1995, 921 p.

Amélioration des espèces végétales cultivées

Objectifs et critères de sélection André GALLAIS et Hubert BANNEROT 1992, 768 p.

Préface

Bertrand Ney, Benoît Carrouée

Cet ouvrage présente les travaux effectués ces dernières années en France sur le pois protéagineux en recherche pour le développement. Il est, cependant, à notre sens, plus qu'un simple descriptif de l'avancée des connaissances agronomiques sur cette espèce. Il est également le témoin d'un processus d'innovation qui a mobilisé l'ensemble des acteurs de la filière. Les années 1980 s'ouvrent avec un nouveau défi pour l'agriculture française et européenne : pallier le déficit en produits végétaux riches en protéines pour l'alimentation animale. En effet, les graines de soja et ses tourteaux monopolisent le marché mondial des protéines alors que la filière animale est en plein essor en France et que la demande croît. L'embargo sur le soja de 1973 et la crise qu'il entraîne dans le secteur animal montrent rapidement les limites de la politique agricole européenne. Le « plan protéines » destiné à promouvoir une filière française de production de matières végétales riches en protéines est alors décidé dans le milieu des années 1970 et ouvre la voie à un règlement européen en 1978. Parmi les cultures candidates figurent la féverole, seul protéagineux traditionnellement cultivé en France pour l'alimentation des animaux, le soja, le pois et, un peu plus tard, le lupin. Le soja restera confiné aux conditions favorables du sud de la France. Le lupin blanc, limité par sa sensibilité au calcaire et la féverole, limitée par sa sensibilité aux fortes températures, restent cantonnés à l'ouest et au nord de la France. C'est le pois, cultivé jusqu'alors en France comme fourrage pour les bovins ou comme légume vert pour l'alimentation humaine, grâce à son fort potentiel de rendement et son cycle court, qui sera le principal support d'une nouvelle filière de matières riches en protéines non issues de tourteaux d'oléagineux.

Dès lors, une nouvelle culture va émerger, rendue possible par la mobilisation de tous les acteurs de la filière: Instituts techniques (FNAMS, UNIP et ITCF devenu aujourd'hui ARVALIS – Institut du végétal), recherche (INRA) et Écoles d'agronomie (INA PG, ENSAM, ESA Angers, ISA Beauvais...), sélectionneurs publics et privés, coopératives, Chambres d'Agriculture. Dès 1985, ces partenaires sont réunis pour réfléchir ensemble au sein du Groupe Agrophysiologie du pois, à l'initiative de l'UNIP. Les résultats des dix premières années de travail seront consignés dans le premier ouvrage en 1994 qui présente l'état des connaissances sur le développement végétatif et reproducteur du pois protéagineux et leur utilisation pour la production. Les efforts importants des sélectionneurs ont fait passer la plante d'une architecture fourragère

préexistante (plante haute, très sensible à la verse, avec une production végétative importante et une production grainière indéterminée) à une structure courte et ramifiée, afila (les folioles étant remplacées par des vrilles), permettant de résister à la verse et de permettre une récolte mécanique aisée, des graines de taille et de qualité plus importante. La culture reste cependant sensible aux maladies surtout dans le Nord et l'Ouest, où sa production végétative importante crée des conditions de milieu favorables à l'expression des maladies, notamment l'anthracnose (Mycosphaerella pinodes), et aux stress hydriques et thermiques dans les régions plus continentales ou méridionales. On constate alors avec les premiers outils de diagnostic mis au point par le groupe que, contrairement aux idées reçues, une culture de pois pourtant fixatrice peut souffrir d'un déficit de nutrition azotée, sous l'effet de stress hydriques précoces, des sitones dont les larves détruisent les nodosités, ou de pratiques culturales conduisant à un sol tassé. De même, son faible système racinaire, dont on sait maintenant que la concurrence des racines et des nodules pour les produits de la photosynthèse est importante, accentue des stress hydriques en fin de cycle qui peuvent limiter les rendements. Ces points identifiés comme pouvant pénaliser la culture ont été largement étudiés au cours des dix dernières années et constituent des contributions très significatives de cette nouvelle édition. Malgré ces caractéristiques parfois défavorables, Solara, variété phare inscrite en 1986 et idéotype moyen convenant à la majeure partie des situations, conquiert très rapidement les champs cultivés. La surface cultivée en pois culmine alors à près de 750 000 ha au début des années 1990. Dans le même esprit, pour promouvoir la culture à l'échelle européenne, se crée dès 1992 l'Association européenne des plantes riches en protéines qui rassemblera les acteurs européens de la filière sous l'instigation de l'UNIP.

Toutefois, à partir de 1988 et de la mise en place de stabilisateurs budgétaires, les réformes successives de la Politique agricole commune abandonnent toute volonté de développement ciblé des protéagineux : au contraire, elles visent – et parviennent – à la stabilisation des surfaces au niveau atteint à la fin des années 1980 dans l'UE. Les surfaces de pois se concentrent alors dans les régions où le climat et la réglementation le rendent le plus compétitif. Le retour fréquent du pois dans les mêmes parcelles de ces régions au cours des années 1990 entraîne le développement de maladies racinaires, en particulier *Aphanomyces* dont les dégâts sur pois sont redoutables. Beaucoup de producteurs de pois expérimentés de ces régions doivent alors abandonner cette culture pendant plusieurs années, le temps d'assainir la situation, ce qui entraîne un recul marqué des surfaces.

Pour faire face à ces problèmes, les acteurs de la filière française se sont mobilisés depuis la fin des années 1990 autour de deux objectifs finalisés majeurs :

- augmenter les surfaces de protéagineux en diversifiant les cultures avec un fort investissement sur le pois d'hiver et la féverole ;
- développer les projets intégrés, combinant agronomie, génétique, pathologie, zootechnie et économie, afin d'une part de développer des idéotypes de pois productifs, de qualité, mais aussi plus résistants aux maladies en particulier racinaires, et d'autre part d'évaluer l'impact environnemental de ces innovations.

Les efforts consentis pour l'émergence de cette filière nouvelle en Europe ne seront pas vains si l'on considère les nouvelles contraintes qui vont certainement peser sur l'agriculture de demain et les atouts d'une culture comme le pois. Celui-ci reste une bonne réponse aux problèmes environnementaux et à la nécessaire diversification des cultures pour un meilleur contrôle des agents pathogènes, ravageurs et mauvaises herbes sans recours excessif aux produits phytosanitaires. La mise en place de la fixation symbiotique de l'azote atmosphérique dès le début du cycle, rend la culture indépendante des engrais azotés, forts consommateurs en énergie fossile et émetteurs de gaz à effet de serre. Ces atouts environnementaux ne peuvent s'exprimer qu'en assurant une gestion optimale de la fertilisation azotée et de la protection phytosanitaire dans toute la rotation et en introduisant éventuellement une culture intermédiaire avant ou après le pois dont le cycle de culture est très court.

La somme des travaux contenus dans cet ouvrage en font le droit fil de son prédécesseur de 1994 et montrent le dynamisme des différents partenaires de la recherche et du développement agricole. Les nouveaux enjeux assignés à l'agriculture poussent à la mobilisation de tous ses acteurs. Les travaux présentés ici et ce qu'ils représentent en sont un témoignage exemplaire.

Table des matières

Analyse du fonctionnement d'un peuplement de pois	19
Choix de la démarche	19
Un cadre d'analyse simple et générique :	
l'approche énergétique de la production de biomasse	20
Mode de représentation de la plante et du couvert de pois	22
Pois de printemps et pois d'hiver	23
I. FONCTIONNEMENT D'UN PEUPLEMENT DE POIS	
ET COMPOSANTES DU RENDEMENT	
ET COMPOSANTES DU RENDEMENT	
1. Développement de la plante	27
Développement végétatif	27
Organisation d'une tige de pois	27
Fonctionnement du méristème caulinaire et de l'extrémité apicale	30
Modélisation du développement foliaire	31
Modélisation en fonction du temps thermique	31
Développement foliaire, de l'initiation à la fin d'expansion	31
La feuille, du déploiement à la sénescence	32
Expansion des organes végétatifs	33
Division puis expansion des cellules	33
Taille finale des organes végétatifs	34
Arrêt de production de nouveaux phytomères	36
Conclusion	36
Initiation florale et début de floraison	36
Définitions et observations	37
Initiation florale	37
Début de floraison	37
Passage à l'état reproducteur chez le pois	37
Effets de la photopériode	39
Effets de la température	41
Effets de l'interaction photopériode × température	41
· · · · · · · · · · · · · · · ·	

	Modélisation des stades « initiation florale » et « début floraison » Utilisation de la date de floraison pour repérer la réactivité	41
	à la photopériode	42
	floraison	42 44
	Développement reproducteur	45
	Les grandes étapes du développement de la graine	45
	La caractérisation des stades reproducteurs	46
	Quels indicateurs?	46
	Le début du remplissage des graines ou le stade limite d'avortement	47
	La fin du remplissage ou la maturité physiologique	47
	L'intégration du développement reproducteur à l'échelle de la plante	48
	La vitesse de progression des stades	48
	Le nombre d'étages florifères	49
	La durée des phases de développement	49
	Intérêt de la formalisation du développement reproducteur	50
	Développement des ramifications	51
	Rappel sur les caractéristiques architecturales	51
	La mise en place et l'activité des bourgeons	53
	Le nombre de bourgeons, une caractéristique variétale	53
	Le rythme d'émission des méristèmes latéraux	53
	L'initiation de phytomères	53
	L'initiation florale	54
	Modéliser l'architecture potentielle	54
	La croissance des axes latéraux	54
	La position des ramifications	55 55
	Le nombre de ramifications	55
	Peu d'effet de la date de semis sur le type de ramifications présentes	56
	R1: une ramification atypique	57 57
	Un phyllochrone peu différent de celui de la tige principale La floraison	57
	Conclusion	58
	Fiche méthodologique : mesures des stades de développement	
	Mesures des stades à l'échelle de la tige	
	Mesures des stades à l'échelle du peuplement	
	Positionnement indicatif des stades dans le temps	63
2.	Acquisition du carbone à l'échelle du peuplement	65
	Présentation de l'approche énergétique de la croissance	65
	Termes de l'équation énergétique de la production de biomasse	66
	Méthodes d'estimation des termes de l'équation de production de biomasse . Détermination de la biomasse	

	Détermination des efficiences d'absorption ou d'interception
	du rayonnement
	A partir de mesures des différentes composantes du bilan radiatif solaire
	A partir de la loi de Beer et de l'indice foliaire
	Estimation du LAI
	Estimation du coefficient d'extinction du rayonnement
	Correspondance entre ε_a et ε_i
	A partir de mesures de caractéristiques structurales ou optiques
	du couvert
	Efficience biologique
	Sources de variabilité de l'efficience d'interception et d'absorption
	Évolution au cours du cycle
	Effet de la date et de la densité de semis
	Variabilité génétique
	Sources de variabilité de l'efficience biologique
	Variation au cours du cycle
	Effet de la date et de la densité de semis
	Variabilité génétique
	Effets des conditions environnementales
	Conclusion
3.	Nutrition azotée
	Courbe de dilution
	Les variations de teneurs en azote selon les stades de développement
	Détermination de la teneur en azote critique chez le pois
	Détermination d'une courbe maximale
	Hypothèses sur le contrôle du prélèvement de l'azote par la plante
	Mise en place des racines et des nodosités, coûts associés
	Mise en place des racines et des nodosités
	Mise en place du système racinaire
	Mise en place des nodosités et sa modulation
	Coûts en carbone associés à la mise en place des structures,
	à leur entretien et à leur fonctionnement
	Flux de carbone associés à la mise en place et au fonctionnement
	du système racinaire nodulé
	Utilisation du carbone au sein du système racinaire selon le mode
	de nutrition azotée
	Perspectives
	Efficience de la nutrition azotée
	Contribution des deux voies d'alimentation en azote à son acquisition au cours du cycle
	Complémentarité entre fixation symbiotique et absorption racinaire
	Une cinétique et une sensibilité différentes aux facteurs
	de l'environnement
	Activité fixatrice : modulation par la croissance, la phénologie
	et les nitrates

	Modulation de l'activité fixatrice par les nitrates	98
	Évolution de l'activité fixatrice au cours du cycle	99
	L'activité fixatrice dépend de la biomasse des nodosités	100
	Optimiser et stabiliser l'alimentation azotée des légumineuses	101
	Fiche méthodologique : mesure de la fixation symbiotique au champ	101
	Rappel des méthodes de mesure en champ	101
	Trois méthodes isotopiques de calcul du %Ndfa	102
	Principe des méthodes isotopiques	102
	Méthodes utilisant une plante de référence non fixatrice	102
4.	Répartition des assimilats carbonés et azotés	107
	Flux de carbone et d'azote au sein de la plante	107
	Rappel sur le transport du carbone et de l'azote dans la plante	107
	Généralités sur le chargement des composés dans les voies	
	de transport	107
	Chargement des sucres et des acides aminés dans le phloème	107
	Chargement des composés azotés dans le xylème	108
	Transport	108
	Flux de xylème	108
	Flux de phloème	109
	Flux de carbone et d'azote et répartition des assimilats	109 110
	Flux phloémien et xylémien de carbone et d'azote	110
	intra-plante	110
	Transport de carbone associé aux composés azotés, conséquences sur le flux de l'azote	110
	Caractéristiques des flux de carbone et d'azote selon les organes	111
	Racines et nodosités	111
	Tiges et pétioles	111
	Apex	111
	Feuilles selon leur stade de développement	111
	Gousses et graines	112
	Répartition de la biomasse et de l'azote au cours du cycle	113
	Les bilans de masse	114
	Allocation de biomasse aux différents organes végétatifs	
	et reproducteurs	114
	Répartition du carbone et de l'azote au cours du cycle	116
	Règles de répartition des assimilats carbonés entre organes en période	110
	reproductrice	118
	Indice de récolte de la biomasse (HI) et de l'azote (NHI)	118
	Indices de récolte mesurés à la récolte	119
	Indices de récolte mesurés au cours du remplissage	120
_	,	
5.	Elaboration des composantes du rendement	123
	Nombre de graines	123
	Déterminisme du nombre de graines à l'échelle du peuplement	123
	Dynamique de répartition des assimilats carbonés	125

Un modèle statique de répartition des graines entre étages	
Conclusion	. 127
Poids d'une graine	. 129
Déterminisme de la vitesse de croissance des graines	
Vitesse de croissance et nombre de cellules cotylédonaires	
Variations du nombre de cellules cotylédonaires	
Variations de la durée de la période de divisions cellulaires	
Déterminisme de la durée du remplissage des graines	
Limitation intrinsèque : poids maximal d'une graine	
Épuisement des ressources carbonées et azotées	
Conclusion	
Teneur en protéines des graines	
	. 135
Régulation différentielle des vitesses d'accumulation d'azote	100
et de croissance d'une graine	. 137
Caractérisation de la quantité d'azote disponible pour le remplissage	. 137
des graines	
Azote exogene accumute penaant te remptissage des grathes	
Effet de la température sur l'azote disponible	
Déterminisme de la vitesse d'accumulation d'azote d'une graine	
Conclusion	
Qualité germinative : déterminisme de la fragilité des graines	
Les composantes de la qualité germinative	142
La qualité physique	
La qualité sanitaire	
La qualité physiologique	
Déterminisme de la fragilité des graines	
Mesure et définition de la fragilité des semences	
Teneur en eau à la récolte : une forte incidence sur la fragilité	
Autres facteurs agissant sur la fragilité	
Sensibilité variétale à la fragilité	
Fragilité et caractéristiques physiques des graines	
	143
Étude du déterminisme agro-climatique de la fragilité par voie	1 47
d'enquête en culture Effet de pluies en fin de cycle et des conditions de dessiccation	147
Conclusion	148
II. EFFETS DES STRESS ABIOTIQUES ET BIOTIQUES	
Elle bes times initition if bioligons	
Stress abiotiques	153
Déficit hydrique et fonctionnement d'un couvert de pois	153
Caractérisation du déficit hydrique et de sa perception par la plante	
Notions de déficit hydrique, contrainte hydrique et stress hydrique	
Une réponse progressive de la plante à un dessèchement du sol	154
Occurrence de déficits hydriques en France	
adjourn rywrywoo or I rureo minimininininininininininininininininin	150

Effet sur le développement	157
Initiation florale et début de la floraison	157
Vitesse de progression des stades	
Durée de production d'organes végétatifs et reproducteurs	158
Effet sur la croissance	158
Expansion des organes végétatifs	158
Photosynthèse et production de biomasse	160
Effet sur le rendement et la qualité	161
Nombre de graines par plante	161
Répartition des graines sur les différents phytomères reproducteurs	161
Poids d'une graine	161
Teneur en protéines	163
Qualité germinative	163
Conclusion	163
Fortes températures et fonctionnement d'un couvert de pois	164
Caractérisation des contraintes thermiques	165
Températures de plantes et d'air	165
Définition d'un seuil de température stressante	166
Occurrence de contraintes thermiques en France	166
Effets des contraintes thermiques	168
Des effets différents selon la position des contraintes thermiques	100
dans le cycle	168
Effet sur la mise en place de la surface foliaire et sur l'interception	100
du rayonnement	169
Effet sur la vitesse d'accumulation de biomasse	
Effet sur la durée de cycle	
Effet sur le nombre de graines	
Conclusion	
Carence azotée	
Indice de nutrition azotée	
Existence de carences azotées pour une culture de pois	
Effets sur le développement Effet sur la croissance aérienne	
Effet sur le rendement et la qualité	
État structural du sol	
Effets sur le développement	
Effets sur la croissance aérienne	
Effets sur le système racinaire et le système fixateur	
Effet sur la profondeur des racines	179
Effet sur la colonisation des racines	180
Effet sur les nodosités	
Effets sur la nutrition azotée	182
Effets sur le rendement et la qualité	183
Conclusion	183

	Températures froides et fonctionnement d'un couvert de pois	184
	Définition d'une contrainte thermique froide	185
	Températures de l'air et de la plante	185
	Définition d'un seuil de température stressante	186
	Occurrence de températures froides en France	187
	Effet des températures froides sur le fonctionnement du couvert	187
	Effet de températures basses positives	187
	Dégâts de gel	190
	Adaptation du pois aux conditions hivernales	191
	Évaluation de la capacité d'endurcissement	191
	Accumulation et répartition de la matière sèche entre les organes	192
	Accumulation de différents composés carbonés au cours	
	de l'acclimatation	193
	Conclusion et perspectives	193
	Fiche méthodologique : échelle de notation des dégâts de gel	194
7.	Stress biotiques	197
	Impact de l'anthracnose sur le fonctionnement d'un couvert de pois	
	et sur le rendement au champ	197
	Le pathosystème	198
	La plante et le peuplement	198
	Le parasité et la maladie	198
	Le climat	201
	Action globale de l'anthracnose sur le rendement et sur ses composantes	201
	Processus physiologiques de l'hôte affectés par le pathogène	202
	L'activité photosynthétique	202
	La remobilisation des éléments carbonés et azotés	203
	Rôle du stade de la plante et de la localisation de la maladie	200
	sur la nuisibilité	204
	Le stade de la plante	204
	La localisation de la maladie sur la plante	205
	Utilisation des connaissances pour la prédiction du fonctionnement	200
	du couvert végétal	205
	Construction d'un modèle de fonctionnement d'un couvert malade	205
	Rôle du cultivar dans la nuisibilité	206
	Prise en compte de la nuisibilité dans la conduite raisonnée	
	des itinéraires techniques	207
	Sitones	208
	Cycle biologique, appréciation des infestations et des dégâts,	200
	effets des systèmes de culture	208
	Effets sur la nutrition azotée et l'élaboration du rendement	209
	Adventices	211

III. INTÉGRATION DES CONNAISSANCES DANS UN MODÈLE GLOBAL ET EXEMPLES D'UTILISATION

et le diagnostic agronomique	217
Pourquoi développer un modèle de culture pour le pois protéagineux ?	217
Structure générale des modèles de culture et données minimales requises	218
Description des modules	219
Module de phénologie	219
La date de levée	219
La date de début de floraison	220
Le début de remplissage des graines (DRG)	220
La date de fin de franchissement du stade limite d'avortement (FSLA)	220
La date de maturité physiologique	221
Module de croissance	221
Module de mise en place des capteurs aériens	221
Module de production de biomasse	221
Module d'élaboration des composantes du rendement	222
Module de bilan hydrique	223
Module de bilan azoté	
Module de répartition de l'azote dans la plante	
Perspectives	226
9. Proposition d'une démarche de diagnostic pour analyser	
es variations de rendement	227
Objectif et présentation générale	227
Description de la demarche de diagnostic	
Exemples d'utilisation de la démarche de diagnostic	229
Exemples d'utilisation de la démarche de diagnostic	229 230
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques	229 230 230
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique	229 230 230 230
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques	229 230 230
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique	229 230 230 230
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique	229 230 230 230 231 231 231
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées	229 230 230 230 231 231 231
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique	229 230 230 230 231 231 231
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques	229 230 230 230 231 231 231 232
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques	229 230 230 231 231 231 232 232 232
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement	229 230 230 231 231 231 232 232
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison	229 230 230 231 231 231 232 232 232 232 232
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison Étude des composantes de rendement	229 230 230 231 231 231 232 232 232 232
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison Étude des composantes de rendement Nombre de graines/m²	229 230 230 231 231 231 232 232 232 232 233 234
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison Étude des composantes de rendement Nombre de graines/m² Profils de graines et profils simplifiés	229 230 230 231 231 231 232 232 232 232 233 234 235
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison Étude des composantes de rendement Nombre de graines/m² Profils de graines et profils simplifiés Poids de 1 000 graines (PMG)	229 230 230 231 231 232 232 232 232 233 234 235 236
Exemples d'utilisation de la démarche de diagnostic Caractérisation du milieu Facteurs climatiques Quotient photothermique Étude des températures froides Étude des températures élevées Bilan hydrique Facteurs biologiques Facteurs physiques Facteurs chimiques Étude de l'élaboration du rendement Bilan au stade début floraison Étude des composantes de rendement Nombre de graines/m² Profils de graines et profils simplifiés	229 230 230 231 231 232 232 232 232 233 234 235 236 236

Utilisation de la modélisation pour l'amélioration des itinéraires techniques	238
Utilisation des outils de caractérisation du milieu et de la culture	238 238 239 239
Une analyse des potentiels de rendements	240 241 242
Conclusion	242
Fiche méthodologique : mesures des profils de graines et profil simplifié Profil de graines par étage	243 243
Mesure de la structure verticale (ou profil simplifié)	244
10. Interactions génotype $ imes$ milieu pour le rendement	
et la teneur en protéines	245
Importance des interactions génotype × milieu pour le rendement	246 246
Interactions des variétés avec les lieux et les années	247 247
Des interactions génotype × milieu faibles pour la teneur en protéines Interactions entre variétés et milieux	249 249 249 250
Caractères pouvant induire des comportements variétaux particuliers Possibilité d'avoir des variétés à rendement et à teneur en protéines	
élevés et stables	250 251
Perspectives pour la culture du pois protéagineux en France et en Europe	253
Des produits de qualité pour l'alimentation humaine et animale	254 254 254
Des risques maîtrisables de transfert des nitrates dans les nappes phréatiques	255 256
Références bibliographiques	259
Acterences bibliographiques	239
Liste des auteurs	279