Edited by Sylvain Perret, Stefano Farolfi and Rashid Hassan

WAATER GOVERNARCE FOR SUSTAINABLE DEVELOPMENT

Approaches and Lessons from Developing and Transitional Countries . .

.

. .

. .

.

Water Governance for Sustainable Development

Water Governance for Sustainable Development

Edited by Sylvain Perret, Stefano Farolfi and Rashid Hassan

London • Sterling, VA

First published by Earthscan in the UK and USA in 2006

Copyright © Sylvain Perret (Cirad), 2006

Cirad Editions TA 283/04 Avenue Agropolis 34938 Montpellier Cedex 5 France

All rights reserved

ISBN-10: 1-84407-319-X ISBN-13: 978-1-84407-319-1 Cirad ISBN: 2-87614-635-5

Typesetting by Composition and Design Services Printed and bound in the UK by Bath Press Cover design by Mike Fell

For a full list of publications please contact:

Earthscan 8–12 Camden High Street London, NW1 0JH, UK Tel: +44 (0)20 7387 8558 Fax: +44 (0)20 7387 8998 Email: earthinfo@earthscan.co.uk Web: www.earthscan.co.uk

22883 Quicksilver Drive, Sterling, VA 20166-2012, USA

Earthscan is an imprint of James and James (Science Publishers) Ltd and publishes in association with the International Institute for Environment and Development

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data:

Water governance for sustainable development / edited by Sylvain Perret, Stefano Farolfi and Rashid Hassan.

p. cm.

"The idea of the present book originated during the international workshop on Water Resource Management for Local Development: Governance, Institutions and Policies (WRM2004, Loskop Dam, South Africa, 8-11 November 2004)"-P.

ISBN-13: 978-1-84407-319-1 (hardback)

ISBN-10: 1-84407-319-X (hardback)

1. Sustainable development–Africa. 2. Water-supply–Africa–Management. 3. Water quality management–Africa. 4. Water resources development–Africa. I. Perret, S. (Sylvain) II. Farolfi, Stefano. III. Hassan, Rashid M.

HC800.Z9E594 2005 333.910096-dc22

2005036769

The paper used for this book is FSC certified. FSC (the Forest Stewardship Council) is an international network to promote responsible management of the world's forests.

Mixed Sources Product group from well-managed forests and other controlled sources www.fsc.org Cert no. SGS-COC-2121 0 1996 Forest Stewardship Council

Contents

List of Boxes, Figures and Tables	ix
List of Acronyms and Abbreviations	xiii
Acknowledgements	xvii
Foreword	xix
Introduction	xxi

Part I

1	Understanding Water Institutions: Structure, Environment and	
	Change Process	3
	R. Maria Saleth	

2	Public–Private Partnership in Irrigation and Drainage: The Need for a Professional Third Party Between Farmers
	and Government

Alain Vidal, Bernard Préfol, Henri Tardieu, Sara Fernandez, Jacques Plantey and Salah Darghouth

21

Part II

3	The Possibility of Trade in Water Use Entitlements in South Africa under the National Water Act of 1998 J. A. Max Döckel	35
4	Redressing Inequities through Domestic Water Supply: A 'Poor' Example from Sekhukhune, South Africa Nynke C. Post Uiterweer, Margreet Z. Zwarteveen, Gert Jan Veldwisch and Barbara M. C. van Koppen	55
5	Local Governance Issues after Irrigation Management Transfer: A Case Study from Limpopo Province, South Africa <i>Gert Jan Veldwisch</i>	75

6	Water Management on a Smallholder Canal Irrigation Scheme	
	in South Africa	93
	Simon S. Letsoalo and Wim Van Averbeke	

7	Emerging Rules after Irrigation Management Transfer to Farmers	111
	Klaartje Vandersypen, K. Kaloga, Y. Coulibaly, A. C. T. Keïta,	
	D. Raes and Jean-Yves Jamin	

8	Crafting Water Institutions for People and Their Businesses:	
	Exploring the Possibilities in Limpopo	127
	Felicity Chancellor	

Part III

9	Conflict Analysis and Value-focused Thinking to Aid Resolution of Water Conflicts in the Mkoji Sub-catchment, Tanzania Leon M. Hermans, Reuben M. J. Kadigi, Henry F. Mahoo and Gerardo E. van Halsema	149
10	Determinants of Quality and Quantity Values of Water for Domestic Uses in the Steelpoort Sub-basin: A Contingent Valuation Approach Benjamin M. Banda, Stefano Farolfi and Bashid Hassan	167
11	Water Resources and Food Security: Simulations for Policy Dialogue in Tanzania Sindi Kasambala, Abdul B. Kamara and David Nyange	189
12	How More Regulated Dam Release Can Improve the Supply from Groundwater and Surface Water in the Tadla Irrigation Scheme in Morocco Thomas Petitguyot and Thierry Rieu	205
13	Impact of Institutional Changes within Small-scale Groundwater Irrigated Systems: A Case Study in Mexico Damien Jourdain	223
14	Local Empowerment in Smallholder Irrigation Schemes: A Methodology for Participatory Diagnosis and Prospective Analysis Sylvain Perret	239

15	Role-playing Game Development in Irrigation Management: A Social Learning Approach Anne Chohin-Kuper, Raphaèle Ducrot, Jean-Philippe Tonneau and Edolnice da Rocha Barros	259
16	Support to Stakeholder Involvement in Water Management Circumventing Some Participation Pitfalls Olivier Barreteau, Géraldine Abrami, S. Chennit and Patrice Garin	275
Inc	lex	291

List of Boxes, Figures and Tables

Boxes

14.1	Elements of diagnosis of the current situation in the	
	Thabina irrigation scheme	248
14.2	Scenario definition for the Thabina irrigation scheme	250
14.3	Scenario testing for the Thabina irrigation scheme	251
14.4	Testing scenarios on the water charging system in Thabina	252
15.1	Game participants	262
15.2	Outcomes of the debriefing sessions	267
15.3	Key issues identified during the debriefing sessions	268

Figures

1.1	Water institutional structure: a simplified representation	6
1.2	Water institutional environment: a partial representation	8
1.3	A stage-based conception of the process of change	12
2.1	A 4-box analytical support diagram representing the commercial	
	risk for the operator, depending on public vs. private management	23
2.2	Location map of case studies	25
3.1	Steps involved in assessing a licence application	45
4.1	Sekhukhune cross-boundary district municipality, showing	
	location of towns involved in case study	58
5.1	An overview sketch of the Thabina irrigation scheme	79
5.2	The typical layout of the outlet structure to the sub-canals	80
5.3	The relation between the design discharge in a sub-canal	
	and the area served by it	80
5.4	Organizational structure of the Thabina irrigation scheme	81
5.5	Ward canals as a technical solution for socio-organizational problems	87
5.6	Sketch of the situation at sub-canal 12	88
6.1	Location of Dzindi	97
6.2	Schematic layout of the water distribution network in Dzindi	
	(not to scale)	98
7.1	Physical design of a tertiary block	112
8.1	Water institutional architecture	132
8.2	Thabina: Existing WUA	136

8.3	Alternative structure	137
8.4	Map of Dingleydale/New Forest	138
8.5	Diagrammatic scheme levels, Dingleydale/New Forest	139
8.6	Water institutional architecture, with user associations	140
9.1	Location map of the Mkoji sub-catchment in Tanzania	152
9.2	Sources of income for households in the three zones of the MSC	155
9.3	Economic water productivity of different sectors in the MSC	161
10.1	The Steelpoort sub-basin: municipalities, administrative wards	
	and main urban centres	173
10.2	Sources of water in the Steelpoort sub-basin (2003)	176
10.3	Water source distribution per municipality in Steelpoort	176
10.4	Water consumption and income in Steelpoort	178
11.1	PODIUM conceptual framework	192
11.2	Population growth and water resources development scenarios	196
12.1	Water resources and allocation decisions	207
12.2	Physical model and variables definition	208
12.3	Groundwater withdrawal according to pumping facilities	210
12.4	Average dam stock (S)	213
12.5	Probability of overflow (a) and failure (b) of the dam	214
12.6	Average release (d)	215
12.7	Guaranteed release (d) with 80% probability	216
12.8	Average volumes from the 2 reservoirs and their sum	
	(d, g, and s + g)	216
12.9	Relative standard deviation of irrigation volume $(s + g)$	217
12.10	Guaranteed volume (s + g) with 80% probability dt^{2}	217
12.11	Average irrigation volume $(s + g)$ according to pumping facility	218
12.12	Relative standard deviation of irrigation volume $(s + g)$	
	according to pumping type	219
13.1	Schematic view of interactions between farmers sharing a well	224
13.2	Non-cooperative equilibrium model	225
13.3	Non-cooperative equilibrium model (formulated	
	as a mixed complementarity problem)	226
13.4	Individual consumptions for cooperative and	
	non-cooperative equilibriums (Group W2)	232
13.5	Well water consumption for cooperative and	
	non-cooperative equilibriums	232
13.6	Group agricultural income for cooperative and	
	non-cooperative equilibriums	233
13.7	Farm agricultural income for cooperative and	
	non-cooperative equilibriums (Group W2)	234
13.8	Group W2 aggregate demand	235
14.1	Smile: structure	242
14.2	The Smile approach: scheduling the action-research process	244
14.3	Example of a farmer typology: classification tree in the Thabina	
	irrigation scheme, South Africa	245
15.1	Virtual irrigation system	263
15.2	Game steps	264

16.1	Evolution of the state of crops on a player' fields during a month	283
16.2	Evolution of downstream flow during a month time step	284

Tables

2.1	Main features of case studies	26
3.1 2.2	Degree of complexity for evaluating existing lawful water use	43
33	Time taken to approve an application to trade	40
3.4	Administrative clusters	51
5.1	Timeline of relevant events in the Thabina irrigation scheme	78
5.2	Responsibilities of three different organizational levels in Thabina: The sub-canal unit: the ward: and the scheme as a whole	83
6.1	Relative importance of the different domains and levels at which conflicts between plot holders over irrigation water are resolved	00
	in Dzindi	103
/.1	Key statistics of the study villages and sample	114
1.2	Overview of differences in design and operation of the various	115
72	types of infrastructure	112
7.5	Association of the experience of problems with the application	117
74	Application of clearly defined rules on water distribution	11/
7.4	by type of infrastructure	119
7.5	Comparison of mean number of farmers on the canal and mean	11)
	proportion of outsiders between canals on which there are clearly	
	defined rules regarding water distribution and canals on which	
	there are not	119
7.6	Association of the experience of problems with the application of clearly defined maintenance rules	121
7.7	Comparison of mean number of farmers on the canal and mean proportion of outsiders between canals on which there are clearly defined rules regarding maintenance and canals on which there	
	are not	122
7.8	Application of clearly defined rules on maintenance by type	
	of infrastructure	122
10.1	Monthly income per household and per capita in Steelpoort	175
10.2	Level of education of the household head (%)	175
10.3	Monthly water consumption per household and per capita	177
10.4	Monthly per capita income, unemployment rate	
	and education attained by the head of the household in urban	1 7 7
105	and rural groups	1//
10.5	in when and rund groups	170
10.6	III uiban and fuila groups Frequency of using/fetching water by course (%)	1/0
10.0	Perception of water quality by source (%)	179
10.7	WTP regression for improved availability of water	180
10.0	·· · · · ·····························	100

10.9	WTP regression for improved quality of water	181
10.10	Predicted willingness to pay for improved quantity	
	and quality of water	182
10A.1	Probability models for willingness to pay for quantity	
	and quality of water	188
11.1	Urban population increase with water resources development	
	and food security	194
11.2	Estimated feed requirement for poultry, dairy and pigs	195
11.3	Increase of population with access to clean water: impacts	
	on water resources development and food security	196
11.4	Yield increase with the current irrigated area: Water	
	and food situation (2025)	198
11.5	Irrigated area increase: water and food situation (2025)	198
11A.1	Rainfed agriculture	201
11A.2	Food grain balance	201
11A.3	Water availability variables	202
11A.4	Reference evapotranspiration (ETo) and rainfall	202
11A.5	Water use balance for 1995, base year	202
11A.6	Water use balance for 2025, projection year	203
11A.7	Water diversion for 1995 and 2025, base year	
	and projection year respectively	203
11A.8	Water availability for 1995 and 2025 base year	
	and projection year respectively	203
11A.9	Water balance for 1995 and 2025	203
11A.10	Water surplus or deficit for 2025	204
12.1	Percentage of equipped land units	218
12A.1	Farm characteristics	222
13.1	General characteristics of simulated wells	231
14.1	Thabina farmers' WTP for water supply and related services	
	under conditions of self-management of the scheme	244
14.2	Examples of crop management styles in the Thabina	
	irrigation scheme	246
14.3	Traits and performances of farming styles and strategies	
	in Thabina	249
14.4	Comparing results from scenarios on vegetable production	
	in Thabina	251
14.5	Comparing results from scenarios on land reallocation	
	to commercial farmers in Thabina	253
15.1	Changes in water pricing in the irrigation scheme of Manicoba	265
16.1	Table to be filled in by each player at each month time step	
	for each water source	283

List of Acronyms and Abbreviations

ABH	Agence de Bassin Hydraulique
ABM	agent-based model
AFEID	International Commission on Irrigation and Drainage
ANC	African National Congress
ARD	Agricultural and Rural Department (World Bank)
ARDA	Agricultural and Rural Development Association
ARWR	annual renewable water resources
BNHR	basic human need reserve
BOT	build-operate-transfer
CCVD	Communauté de Communes du Val de Drôme
CEAG	Comisión Estatal del Agua de Guanajuato
CMA	catchment management agency
CMS	crop management style
CODEVASF	Companhia de Desenvolvimento dos Vales do São Francisco e
	do Parnaíba (development company of the São Francisco river
	valley)
CSIR	Council for Scientific and Industrial Research
CV	contingent valuation
CVM	contingent valuation methodology
DD/NF	Dingleydale/New Forest
DFID	Department for International Development (UK)
DOA	Department of Agriculture (UK)
DPLG	Department of Provincial and Local Government (South Africa)
DWAF	Department of Water Affairs and Forestry (South Africa)
DWSS	Domestic water supply system
ECA	Economic Commission for Africa
EO	extension officer
ETa	actual evapotranspiration
ЕТо	reference evapotranspiration
ЕТр	potential evapotranspiration
FBW	free basic water
FDI	Foreign direct investment
GGP	gross geographic product
GNU	Government of National Unity
GWC	Ga-Mashishi Water Committee
GWP	Global Water Partnership
HYV	high yielding variety
I&D	irrigation and drainage

ICID	International Commission on Irrigation and Drainage
ICT	information and communication tool
IDA	institutional decomposition and analysis
IDSP	I&D service provider
IFAD	International Fund for Agricultural Development
IFRI	International Food Research Institute
IMT	irrigation management transfer
IWMI	International Water Management Institute
IWRM	integrated water resources management
JICA	Japan International Cooperation Agency
KKT	Karush-Kuhn-Tucker
LDR	linear division rule
LDWA	Lebowa Department of Water Affairs
LNW	Lepelle Northern Water
LPDA	Limpopo Department of Agriculture
LWUA	Lebalelo Water Users Association
MAFS	Ministry of Agriculture and Food Security
MC	management committee
MCM	million cubic metres
MCP	mixed complementarity problem
MDA	Municipal Demarcation Act
MENA	Middle East and North Africa
MSC	Mkoji Sub-Catchment
MWC	Moeding Water Committee
NEPAD	New Partnership for Africa's Development
NGO	non-governmental organization
NIMBY	not in my back yard
NIMP	National irrigation Master Plan
NPDALE	Northern Province Department of Agriculture, Land
	and Environment
NWA	National Water Act
NWRS	National Water Resource Strategy
O&M	operation and maintenance
OBA	output-based aid
OLS	ordinary least squares
OMM	operation, maintenance and management
ORMVAT	Office Régional de Mise en Valeur Agricole du Tadla
PIM	participatory irrigation management
PITC	policy induced transfer costs
PPP	public–private partnership
PSD	public service delegation
PTO	permission to occupy
PUWS	potentially utilizable water resources
RDP	reconstruction and development programme
RESIS	Revitalization of Smallholder Irrigation Schemes
RPG	role-playing game
SA	South Africa

•

SALGA	South African Local Government Association
SDM	Sekhukhune District Municipality
SIS	smallholder irrigation scheme
SIWI	Stockholm International Water Institute
SMC	scheme management committee
Smile	Sustainable Management of Irrigated Land and Environments
SSB	Steelpoort Sub-basin
TA	traditional authority
TD	total diversions
TLC	Transitional Local Council
URT	United Republic of Tanzania
WB	water bailiff
WC	water committee
WMA	water management area
WRC	Water Research Commission
WSA	Water Services Act (South Africa)
WSS	water and sanitation sector
WTA	willingness to accept
WTP	willingness to pay
WUA	water users association
WWAP	World Water Assessment Programme
	-

,

Acknowledgements

The idea of the present book originated during the international workshop on *Water Resource Management for Local Development: Governance, Institutions and Policies* (WRM2004, Loskop Dam, South Africa, 8–11 November 2004). The workshop gathered 90 delegates from 17 different countries. About 50 papers were presented, and case studies from South Africa, Zimbabwe, Tanzania, Nigeria, Mali, Burkina-Faso, Cameroon, Morocco, Senegal and Egypt were discussed. The core idea of the workshop was to create an opportunity for exchange, discussion, and knowledge- and experience-sharing between research teams, and policy and development agents. Full papers and further information on the workshop can be drawn from the website: http://wrm2004.cirad.fr

The event received financial and institutional support from the Department of Water Affairs and Forestry of South Africa (DWAF), the Water Research Commission (WRC), the Embassy of France in South Africa, the Joint Research Unit on Water Management at Cemagref-Cirad-Ird (PCSI, UMR G-Eau), and the French section of the International Commission on Irrigation and Drainage (AFEID). We gratefully acknowledge these organizations for their generous support.

A special note of thanks is due to the following members of the organizations mentioned above for their sustained efforts in making sure the event would be a success: Eiman Karar, Derek Weston, Francois Van der Merwe and Eustathia Bofilatos at DWAF, Gerhard Backeberg and Kevin Petersen at the WRC, Samuel Elmaleh at the French Embassy, Patrice Garin and Jean-Yves Jamin at UMR G-Eau, and Henri Tardieu and Alain Vidal at AFEID.

Considering the success of the workshop, and the quality of the material presented and debated therein, it was decided to develop this book. Papers have been pre-selected and peer-reviewed. Alongside my fellow scientific editors, Dr Stefano Farolfi, and Prof Rashid Hassan, a number of international experts participated in the editing process. The following individuals must be acknowledged and thanked for their efforts, as members of the editorial committee:

Dr Martine Antona (Cirad, France); Dr Gerhard Backeberg (Water Research Commission, South Africa); Dr Felicity Chancellor (Aquademos, United Kingdom); Dr Jean-Yves Jamin (Cirad, France); Dr Damien Jourdain (Cirad, France); Mrs Eiman Karar (Department of Water Affairs and Forestry, South Africa); Dr Kevin Pietersen (Water Research Commission, South Africa); Dr Thierry Rieu (Engref, France); Prof Kate Rowntree (Rhodes University, South Africa); Dr R. Maria Saleth (International Water Management Institute, Sri Lanka); Dr Geert van Vliet (Cirad, France).

A special word of gratitude goes to Cerkia Grant, who has been a very efficient assistant to the editorial process, with the utmost judgement.