ETUDES

équipements pour l'eau et l'environnement 25

Transport éolien de la neige Processus physiques et modélisations

Florence Naaim-Bouvet, Mohamed Naaim

Transport éolien de la neige

Processus physiques et modélisations

Florence Naaim-Bouvet, Mohamed Naaim

Cemagref UR Érosion torrentielle, neige et avalanches Groupement de Grenoble Domaine universitaire – 2, rue de la Papeterie BP 76 – 38402 Saint-Martin-D'Hères Cedex Tél. 04 76 76 27 27 – Fax 04 76 51 38 03

Photo de couverture – Traces de pas en relief dans la neige : structure éolienne liée à l'érosion du manteau neigeux (Bruno Jamet, Cemagref)

Transport éolien de la neige – Processus physiques et modélisations, Florence Naaim-Bouvet, Mohamed Naaim © Cemagref 2002, 1^{re} édition. ISBN 2-85362-562-1, ISSN 1258-276X. Dépôt légal 3^e trimestre 2002. Collection *Études* du Cemagref, série *Équipements pour l'eau et l'environnement* n° 25, dirigée par François Lacroix, chef du département. Impression et façonnage : Ateliers Cemagref, BP 44, 92163 Antony Cedex. Vente par correspondance : Publi-Trans, ZI Marinière 2, 91080 Bondoufle ; tél. 01 69 10 85 85. Diffusion aux libraires : TEC et DOC, 14 rue de Provigny, 94236 Cachan Cedex, tél. 01 47 40 67 00. **Prix : 40 € TTC** Le Cemagref, institut de recherche pour l'ingénierie de l'agriculture et de l'environnement, est un établissement public sous la tutelle des ministères chargés de la Recherche et de l'Agriculture.

Ses équipes conçoivent des méthodes et des outils pour l'action publique en faveur de l'agriculture et de l'environnement. Leur maîtrise des sciences et techniques de l'ingénieur contribue à la mutation des activités liées à l'agriculture, à l'agro-alimentaire et à l'environnement.

La recherche du Cemagref concerne les **eaux continentales**, ainsi que les **milieux terrestres** et plus particulièrement leur occupation par **l'agriculture** et la **forêt**. Elle a pour objectif d'élaborer des méthodes et des outils d'une part de **gestion intégrée** des milieux, d'autre part de conception et d'exploitation **d'équipements**.

Les équipes, qui rassemblent un millier de personnes réparties sur le territoire national, sont organisées en **quatre départements scientifiques** :

- Gestion des milieux aquatiques
- Équipements pour l'eau et l'environnement
- Gestion des territoires
- Equipements agricoles et alimentaires

Les recherches du département Équipements pour l'eau et l'environnement s'orientent vers :

- l'ingénierie et la prévention des risques naturels en montagne,
- l'ingénierie et la sécurité des barrages et des ouvrages hydrauliques,
- la maîtrise et la gestion des déchets,
- les techniques et la gestion de l'irrigation et du drainage,
- les techniques et la gestion d'équipements publics pour l'eau et les déchets,
- l'ingénierie des interactions eau-matériaux-ouvrages.

Résumé

Le transport de neige par le vent entraîne la formation de corniches et de plaques, génératrices d'avalanches en haute montagne, et la formation de congères sur les voies de communication en plaine. Il est de ce fait à l'origine de risques naturels qui peuvent engendrer de graves conséquences pour les biens et les personnes.

Un premier ouvrage intitulé « Transport de la neige par le vent : connaissances de base et recommandations » a été édité par le Cemagref en 1992. Il faisait le point sur les règles empiriques permettant de mettre en place une ingénierie de protection contre ce phénomène.

Depuis son édition, de nombreuses recherches ont été entreprises. Elles ont apporté des progrès significatifs dans la compréhension physique des processus et leurs occurrences tant dans l'espace que dans le temps. L'enjeu du présent ouvrage, qui tente de répondre à la question que chaque ingénieur se pose « Où et en combien de temps, se forme une accumulation de neige ? » est de faire la synthèse de ces connaissances et des outils de modélisation récents.

La première partie de cet ouvrage a donc pour objectif d'appréhender la complexité des phénomènes et de tenter de comprendre les mécanismes mis en jeu. Elle traite successivement, de la couche limite, de l'arrachement aérodynamique des particules, des différents modes de transport éoliens et de l'obtention des profils de transport à saturation. Cette partie fait ainsi le point sur les connaissances actuelles dans ce domaine.

La deuxième partie est dédiée aux outils de modélisations physique et numérique. Elle débute par une synthèse des différentes approches réalisées par la communauté scientifique internationale pour se terminer par la présentation de la contribution propre des équipes du Cemagref.

Summary

Blowing snow produces cornices, source of dangerous avalanche starting zones in high mountainous areas, and snowdrifts on the roads in plains. Therefore, it is the cause of natural hazards having serious consequences for goods and people.

A first book entitled « Drifting snow : basic knowledge and recommendations » and edited by Cemagref in 1992, reviewed the empirical rules necessary to set up protection against this phenomenon.

Since this edition, many researches were carried out. Significant progress was achieved in the physical comprehension of the processes involved and their occurrences in the space as well as in the time. This book tries to provide answers to the question each engineer is faced with « For a given meteorological episode and for a given topographic configuration, where does snow accumulate and in how long ? •. So, this work aims at realizing the synthesis of this knowledge and recent modelling tools.

The first part of this work is concerned with the description of the physical mechanisms involved in blowing snow and it deals successively with : the boundary layer, the aerodynamical entrainment of particles, the different types of particles transport and the particles profiles at saturation. A synthesis of the current knowledge in this field is put forward in this part.

The second part covers the physical and numerical modelling. It starts with a synthesis of the different approaches developed by the international scientific community and ends with the presentation of the Cernagref teams own contribution.

Remerciements

Cet ouvrage est la synthèse d'une dizaine d'années de recherches sur le transport de la neige par le vent, menées au sein de l'Unité de Recherche ETNA du Cemagref. Ces travaux ont donné lieu à la soutenance de thèses et d'habilitation à diriger les recherches. A ce titre cet ouvrage a bénéficié de conseils, d'avis et de commentaires de Michel Belorgey (Université du Havre), Jean-Pierre Chollet (LEGI/Université Joseph Fourier Grenoble), Michel Coantic (IMST/Marseille), Kiouchi Nishimura (Université d'Hokkaïdo), Rémi Pochat (LCPC) et Jean-Paul Schon (TSI/Université de Saint-Etienne) que nous tenons à remercier.

Par ailleurs, les différentes expérimentations menées au laboratoire et in situ n'auraient pu avoir lieu sans la participation active et le soutien des responsables des laboratoires et de l'instrumentation que sont Frédéric Ousset, Christian Eymond-Gris, Martine Roussel, Muriel Lagauzère et Hervé Bellot, et auxquels nous exprimons toute notre reconnaissance.

Hugo Martinez et Jean-Luc Michaux durant leur travail de thèse ont eux aussi contribué à la progression des connaissances tout comme Bertrand Blanquart, Ahmed Bouddour, Jean-Charles Français et Frédéric Sarret, stagiaires au sein de l'Unité de Recherche ETNA.

Nous tenons aussi à remercier chaleureusement Martine Girier et Julienne Baudel pour le travail de relecture et de mise en forme du document.

Les auteurs

5

• • . .

Sommaire général

-	Page
Introduction	41
1. Transport de la neige par le vent en haute montagne	43
2. Transport de la neige par le vent dans des zones de plateau	44
Chapitre 1 – Théorie de la couche limite	49
1. Couche limite au sol	51
 Équations de Reynolds pour des écoulements cisaillés minces et turbulents 1 Notations 2 Équations générales 3 Cas particulier du modèle idéal à flux constant 3. Région interne – Région externe – Région de recouvrement. 3.1 Région interne : loi universelle de paroi (paroi lisse, paroi rugueuse) 3.1.2 Paroi rugueuse. 3.2 Couche de recouvrement : sous-couche logarithmique ou inertielle (paroi lisse, paroi rugueuse). 3.2.1 Paroi lisse. 3.2.2 Paroi rugueuse. 3.3 Région externe (loi de vitesse déficitaire). 3.4 Conditions de validité de la loi logarithmique. 3.5 Détermination expérimentale de la contrainte pariétale 3.6 Viscosité turbulente pour la sous-couche logarithmique 	52 52 54 54 55 55 56 56 56 56 56 57 59 60 60
 4. La couche limite atmosphérique 4.1 Les différents états de la couche limite atmosphérique 4.2 Vitesse de frottement et longueur de rugosité 	60 60 62
Chapitre 2 – Arrachement des particules par entraînement aérodynamique	63
1. Du grain de sable au grain de neige 1.1 Du cristal au manteau neigeux	65 65

ź

	Page
1.1.1 Formation	65
1.1.2 Les différents cristaux	66
1.2 Le manteau neigeux	67
2. Évolution du manteau neigeux	68
2.1 Le tassement	68
2.2 La cohésion	69
2.3 La température	69
2.4 Les précipitations	69
2.5 Le vent	70
3. Mise en envol des particules : influence des caractéristiques des	70
3 1 Notion de vitesse de frottement seuil	70
3.2 Cas particulier de la peige	73
3.2 Cas particulier de la heige	73
2.2.1 Approvine empirique	73
3.2.1.2 Variation de la vitesse-seuil en fonction de la dureté de la	73
surface	74
3.2.1.3 Variation de la vitesse-seuil en fonction de l'indice de mobilité : l'application Protéon	75
3.2.2 Approche théorique	77
3.2.2.1 Cohésion de frittage	77
3.2.2.2 Influence de la cohésion de frittage sur la vitesse de frottement	70
2.2 Conséguences ou piveou de la madélication des processus	/0
3.3 Consequences au niveau de la modelisation des processus	01
4. Mise en envol des particules : influence de la rugosité	81
5. Mise en envol des particules : influence de la turbulence	83
5.1 Mise en envol des particules et contrainte de Reynolds	83
5.2 Production de la turbulence dans le cas d'une couche limite	05
turbulente ilsse	80
5.3 Extension au cas d'une couche limite turbuiente rugueuse	87
5.3.1 Rugosite et larieres a faible vitesse	8/
5.3.2 Influence des tourbillons de Kelvin-Helmoltz	88
Chapitre 3 – Les différents modes de transport éolien	91
1. La théorie classique du transport de particules	93
1.1 Saltation	93
1.1.1 Equation de la trajectoire de saltation	94
1.1.1.1 Équation simplifiée	94
1.1.1.2 Équation complète	96

1.1.2 Caractéristiques de la trajectoire de saltation. 9 1.1.3 Influence de la turbulence sur la trajectoire de saltation. 9 1.2 La surface en reptation 10 1.3 Diffusion turbulente 10 2. Les dernières avancées théoriques en matière de transport de particules. 10 2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.3 Cas particulier de la neige 10 2.1.3 Cas particulies à faible sphéricité 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.1.3 Surface en reptation : glissement du lite de particules 11	96 99 00 01 02 02 02 02 03 05 05 06 08 09 13
1.1.3 Influence de la turbulence sur la trajectoire de saltation. 10 1.2 La surface en reptation 10 1.3 Diffusion turbulente 10 2. Les dernières avancées théoriques en matière de transport de particules. 10 2. Les dernières avancées théoriques en matière de transport de particules. 10 2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale. 10 2.1.2 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique. 10 2.1.2 Approche numérique. 10 2.1.3 Cas particulier de la neige 10 2.1.3 Particules à faible sphéricité 10 2.1.3 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	99 00 01 02 02 02 02 03 05 05 05 06 08 09 13
1.2 La surface en reptation 10 1.3 Diffusion turbulente 10 2. Les dernières avancées théoriques en matière de transport de particules 10 2. Les dernières avancées théoriques en matière de transport de particules 10 2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.2 Approche numérique 10 2.1.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3 Particules à faible sphéricité 10 2.1.3 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	00 01 02 02 02 02 02 03 05 06 08 09 13
1.3 Diffusion turbulente 10 2. Les dernières avancées théoriques en matière de transport de particules 10 2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale 10 2.1.1 Approche expérimentale 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.3 Surface en reptation : glissement du lite de particules 11	01 02 02 02 03 05 05 06 08 09 13
 2. Les dernières avancées théoriques en matière de transport de particules	02 02 02 03 05 05 06 08 09 13
2. Les dernières avancées théoriques en matière de transport de particules. 10 2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale. 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique. 10 2.1.2.1 La démarche 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	02 02 02 03 05 05 06 08 09 13
2.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale 10 2.1.1 Approche expérimentale 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.2 Approche numérique 10 2.1.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	02 02 02 03 05 05 05 06 08 09 13
2.1.1 Saltation : la « fonction splash » 10 2.1.1 Approche expérimentale 10 2.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.3 Cas particulier de la neige 10 2.1.3 Cas particules à faible sphéricité 10 2.1.3.1 Particules à faible sphéricité 10 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	02 02 03 05 05 06 08 09 13
2.1.1 Approche expenimentale 10 2.1.1.1 Expériences de Mitha (1986) 10 2.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.2.1 La démarche 10 2.1.2.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	02 03 05 05 06 08 09 13
2.1.1.2 Expériences de Willets et Rice (1986) 10 2.1.2 Approche numérique 10 2.1.2.1 La démarche 10 2.1.2.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	03 05 05 06 08 09 13
2.1.2 Approche numérique	05 05 06 08 09 13
2.1.2 Approche numerque 10 2.1.2.1 La démarche 10 2.1.2.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 10 2.2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	05 05 06 08 09 13
2.1.2.1 La demarche 10 2.1.2.2 Les résultats obtenus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 10 2.2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	06 08 09 13
2.1.2 Les resultats obternus 10 2.1.3 Cas particulier de la neige 10 2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	08 09 13
2.1.3.1 Particules à faible sphéricité 10 2.1.3.2 Particules cohésives 11 2.2.2 Reptation : vers une nouvelle définition 11 2.3 Surface en reptation : glissement du lite de particules 11	09 13
2.1.3.2 Particules cohésives 1* 2.2 Reptation : vers une nouvelle définition 1* 2.3 Surface en reptation : glissement du lite de particules 1*	13
2.2 Reptation : vers une nouvelle définition 1 2.3 Surface en reptation : glissement du lite de particules 1	10
2.3 Surface en reptation : glissement du lite de particules	14
	15
24 Saltation nure et saltation modifiée	15
2.5 Suspension 1	15
	10
3 Transport de particules dans l'eau 11	17
3.1 Saltation dans l'eau : processus d'élection des particules	17
3.2 Saltation dans l'eau : importance relative de la saltation et de la	
diffusion turbulente 11	18
3.3 Saltation dans l'eau : chocs interparticulaires	19
Chapitre 4 – Modification de la couche limite en présence de	
particules 12	21
1. Cas de la diffusion turbulente 12	23
1.1 Approche expérimentale : influence des particules sur la turbulence	23
1.2 Approche théorique : influence des particules sur la turbulence	24
1.3 Limite de ces approches 12	25
2. Cas de la saltation	26
2.1 Approche expérimentale : modification de la rugosité	26
	26
2.1.1 Utilisation de la loi logarithme	~~
2.1.1 Utilisation de la loi logarithme 12 2.1.1 Cas d'un écoulement stationnaire 12	26
2.1.1 Utilisation de la loi logarithme 12 2.1.1 Cas d'un écoulement stationnaire 12 2.1.1.2 Influence de la rugosité initiale 12	26 26
2.1.1 Utilisation de la loi logarithme122.1.1 Cas d'un écoulement stationnaire122.1.1.2 Influence de la rugosité initiale122.1.1.3 Cas d'un écoulement instationnaire12	26 26 27
2.1.1 Utilisation de la loi logarithme122.1.1.1 Cas d'un écoulement stationnaire122.1.1.2 Influence de la rugosité initiale122.1.1.3 Cas d'un écoulement instationnaire122.1.2 Utilisation de la loi logarithme modifiée12	26 26 27 29

.

	P
2.2 Approche expérimentale : modification de la vitesse de	
frottement	
2.2.1 Augmentation de la vitesse de frottement	-
2.2.2 Diminution de la vitesse de frottement	
2.3 Approche théorique	
2.3.1 Détermination des contraintes exercées par le fluide et par les	
particules	•
2.3.1.1 Formulation proposée par Anderson et Haff	
2.3.1.2 Formulation proposée par Mc Ewan et Willet	
2.3.2 Profils de vitesse de vent obtenus par modélisation numérique	•
2.3.2.1 Résultats obtenus par Anderson et Haff	,
2.3.2.2 Résultats obtenus par Mc Ewan et Willet	
3. Cas particulier de la neige : modification de la particule de neige	
en transport dans la couche de saltation et de diffusion	
3.1 Modification des caractéristiques de la particule de neige	
3.1.1 Périmètres (P ₀) et surface (S ₀) des grains	
3 1 2 Pourcentage de courbure convexe et concave	
313 Rannort P. ² /4 Π S.	•
3 1 4 Histogramme des convexités	•
3 2 Sublimation de la narticule de neige	
Chapitre 5 – Profil de concentration et obtention de la saturation	
1. Saltation	
1.1 La théorie classique : les différentes expressions du débit de	
particules à saturation	
1.1.1 Le sable	
1.1.1.1 Formulation de Bagnold	
1.1.1.2 Autres formulations	
1.1.2 La neige	
12 Les dernières avancées théoriques : profils de concentration et	
obtention de la saturation	
1 2 1 Cas du sable	
1211 Annroche numérique	
1 2 1 2 Annroche exnérimentale	
1 2 2 Cas de la neige	
2. Diffusion turbulente	
2.1 mise en equations	
2.1.1 Diffusion moleculaire	
2.1.2 Diffusion turbulente	
2.1.3 Nombre de Schmidt	
2.2 Profils a saturation	

	Page
2.3 Vérification expérimentale	156
soufflerie	156
2.3.2 Verification experimentale pour des particules de neige a	157
2 3 2 1 Données de Dingle analysées par Mellor et Fellers	157
2.3.2.2 Retraitement des données de Dingle	158
3. Couplage saltation / diffusion turbulente	166
4. Obtention des profils à saturation : longueur de saturation	168
4.1 Cas des particules solides	168
4.2 Cas des particules de neige	169
4.3 Importance relative de la saltation et de la diffusion turbulente sur	
la longueur nécessaire à l'obtention de la saturation	170
4.3.1 Influence du nombre de Schmidt	1/0
4.3.2 Influence de la vitesse de chute	171
4.3.3 Influence de la vitesse de frottement	172
4.3.4 Initialities du pas d'espace (diffusion numerique)	172
5 Influence des instabilités écliennes	174
5 1 Cas des particules solides	174
5.2 Cas des particules de neige	174
5.2.1 Étude en soufflerie climatique de l'influence des vents	
instationnaires	175
5.2.1.1 Couche de neige soumise à des accélérations et des	
décélérations de vent	175
5.2.1.2 Couche de neige soumise à un vent de type sinusoïdal	181
5.2.2 Etude in situ de l'influence des vents instationnaires	182
6. Le dépôt des particules	183
6.1 Les mécanismes de dépôt	184
6.2 La vitesse seuil de dépôt	184
6.2.1 Approche expérimentale	184
6.2.2 Approche numérique	185
6.2.3 Cas particulier de la neige	185
6.3 Cohésion de frittage et dépôt : cas particulier de la neige	187
Chapitre 6 – Modélisation physique du transport éolien de la neige :	
état de l'art	189
1. La notion de critère de similitude	191

	Page
2. Modélisation par Kind	193
2.1 Modélisation de l'écoulement	193
2.1.1 Similitude de Revnolds	193
2.1.2 Similitude géométrique	194
2.2 Modélisation de la saltation	194
2.2.1 Etablissement du régime de saltation	194
2.2.2 Traiectoire des particules	195
2.3 Débit des particules	195
2.4 Coefficient de restitution	197
2.5 Modélisation des dépôts	197
2.6 Durée des expériences	198
2.7 Restrictions envisageables et limites d'application	198
2.8 Récapitulatif	199
——————————————————————————————————————	
3. Modélisation par Iversen	199
3.1 Modélisation de l'écoulement	200
3.2 Modélisation de la saltation	200
3.2.1 Trajectoire des particules	200
3.2.2 Prépondérance de la saltation	201
3.3 Restrictions envisageables	201
3.4 Modélisation des dépôts	202
3.5 Durée des expériences	202
3.6. Récapitulatif	206
4. Modélisation par David : Application des critères d'Iversen	207
4.1 Modélisation de l'écoulement	207
4.2 Modélisation de la saltation	208
4.2.1 Trajectoire des particules	208
4.2.2 Débit des particules	208
4.3 Modélisation des dépôts	208
4.4 Durée des expériences	208
4.5 Restrictions envisageables et limites d'application	209
4.6 Récapitulatif	210
5 Madélination par Hartig : application des critères d'horsen	244
5. Modélisation de le coltation	211
5.1 Mouelisation de la sallation	211
5.2 Coemcient de susceptionite	211
5.3 Recapitulatif	212
6 Modélisation par Tabler	212
6 1 Modélisation de l'écoulement	212
6.1.1. Similitude de Revnolde	212
6 1 2 Similitude de Froude	212
6.1.2 Similitude de l'Isuae	212
6.2 Modélisation de la soltation	213
	∠13

.

	Page
6.2.1 Trajectoire des particules	213
6.2.2 Mode de transport prépondérant	214
6.2.3 Débit des particules	214
6.3 Durée des expériences	214
6.4 Récapitulatif	215
7 Medéliection per Appe	215
7. Mouelisation par Anno	215
7.1 Vels rabandon du nombre de Frodue	215
7.1.1 Nombre de Froude basé sur les languours d'obstacles	210
7.1.2 Nombre de Froude basé sur les longueurs d'obstacles	217
7.1.5 NOMBLE de Floude base sur les diametres de particules	210
7.2 Introduction du lapport u+/u+	210
7.2.1 Justification expérimentale	210
7.2.2 Justification des dépâts	218
7.3 Modelisation des depois	220
7.5 Bécopitulatif	220
	~~ (
8. Modélisation physique dans l'eau et modélisation physique dans l'air	222
Chapitre 7 – Modélisation physique du transport éolien de neige	225
1. Les dispositifs expérimentaux	227
1.1 Expérimentation à l'échelle 1	227
1.2 Expérimentation à l'échelle réduite	228
1.2.1 Modélisation physique en soufflerie avec des particules	000
séches	229
1.2.1.1 Southerie	229
1.2.1.2 Instrumentation peripherique	230
1.2.2 Modelisation physique en souffierie avec de la neige	232
1.2.2.1 La souffierie climatique Jules Verne	232
1.2.2.2 Le CES (Cryospheric Environment Simulator)	200
1.2.3 Modelisation physique a l'exterieur avec du sable	200
1.2.4 Modelisation physique a l'exterieur avec de la neige	230
2. Examen critique des critères de similitude	237
2.1 Exemple de modélisation physique	238
2.1.1 Résultats issus de la modélisation physique	238
2.1.2 Commentaires	240
2.1.2.1 Forme des congères	240
2.1.2.2 Vitesse	241
2.1.2.3 Durée de tempête	241
2.2 Similitude géométrique : porosité et perte de charge	241
2.3 Rugosité aérodynamique en l'absence de saltation	243

	Page
2.4 Rugosité aérodynamique en présence de saltation	245
2.4.1 Vers un « nouveau » nombre de Froude	245
2.4.2 Détermination expérimentale de la rugosité aérodynamique	
en présence de saltation	246
2 5 Coefficient de susceptibilité	249
2.6 Nombre de Froude et ses dérivés	249
2.6.1 Approche expérimentale	250
2.6.2 Approche théorique	251
2.6.2.1 Conservation de C-	252
2.6.2.2 Conservation de U/U	252
27 Rannort des vitesses 1./1.	250
2.7 1 Conditions expérimentales	254
2.7.2 Vérification expérimentale	256
2.7.2 Vemication experimentale	200
frottement souil de dénôt	257
2.7.4 Détermination expérimentale de la vitesse de frottement	201
2.7.4 Determination experimentale de la vitesse de irollement	259
2.8 Limites d'utilisation de <i>u lu</i>	200
2.0 Ennites d'utilisation de débit des particules : aritère de temps	200
2.9 Parametre derive du debit des particules : chiere de temps	262
2.0.1 Touv do transport adimonoionnalia	202
2.9.1 Taux de transport admensionnaise	202
2.9.2 vitesse de reference et vitesse de frottement	262
2.9.3 Influence de la longueur de la zone de reprise sur la fonction 3	262
2.9.4 Validation du parametre derive du debit de particules lorsque	
la saturation en particules est atteinte	264
2.9.5 Limite d'utilisation du parametre derive du debit de particules	
lorsque le profil d'equilibre de la congere est atteint	268
2.9.6 Influence de la dispersion de la granulomètrie pour les particules	
modeles	268
2.10 Critère de temps proposé par Anno	271
2.10.1 Comparaison théorique entre le critère de temps proposé par	
Anno et celui propose par lversen	271
2.10.2 Comparaison numérique entre le critère de temps proposé par	
Anno et celui proposé par lversen	273
2.10.2.1 Application du critère de lversen	273
2.10.2.2. Application du critère de Anno	275
2.10.2.3 Conclusions	275
2.11 Isochronie	275
2.12 Influence du profil de concentration sur la dynamique de la	
formation de la congère	276
2.13 Influence des particules sur la forme de la congère	280
3. Conclusions : Intérêts et limites de la simulation physique du transport	
éolien de la neige	281
3.1 Les critères de similitude : une liste qui s'allonge	281

•

	Page
3.1.1 Adimensionnalisation de l'équation de conservation de la	
masse des particules dans la couche de diffusion turbulente 3.1.2 Adimensionnalisation de la longueur de la zone d'ablation	281
nécessaire à l'obtention de la saturation	282
physique	282
3.2.1 Vitesse	282
3.2.2 Particules et forme des accumulations	284
3.2.3 Critère de temps	285
3.2.4 Quelques exemples d'utilisation	285
3.3 Vers de nouveaux horizons : les apports possibles de la	
modélisation numérique	285
Chapitre 8 – Modélisation numérique du transport éolien de la neige :	287
	201
1. Modèle d'écoulement	289
1 1 Les modèles de turbulence	289
1 1 1 Le concept de viscosité turbulente	290
1.1.2 Modèle de longueur de mélange	291
1 1 3 Modèle à une équation de transport	291
1 1 4 Modèle à deux équations de transport (k- ε)	292
1.2 Modèles de turbulence et écoulement à recirculation	293
1.3 Modèles de turbulence et écoulement dinbasique	295
1.4 Modèles de la balence et écodiement alphasique	200
1.5 Los modèles d'écouloments utilisés dans les modélisations du	200
transport de la poise par le vent	200
transport de la neige par le vent	299
2. Modèles d'arrachement de dépôt et de transport des particules	299
2.1 Modèle d'arrachement et de dépôt d'après lversen	299
2,2 Modèle d'arrachement et de dépôt d'après Liston, Brown et	
Dent	301
2.3 Limites des approches proposées par lyersen et Liston	303
2.4 Modèle d'arrachement et de dépôt d'après Uematsu et al	304
2.5 Modèle d'arrachement d'après Castelle	305
2.6 Modèle d'arrachement et de dépôt d'après Anderson et Haff	308
2.6.1 Description du modèle	308
2.6.2 A propos d'une utilisation plus générale des concepts	
développés par Anderson et Haff	312
2.6.3 Utilisation du concept développé par Anderson et Haff pour	
la modélisation du transport de la neige par le vent	313
2.7 Modèles d'érosion, de transport éolien et de dépôt sur réseaux	
d'après Masselot	315
2.7.1 Le transport éolien	315

2.7.3 L'érosion 2.7.4 Résultats	316 316
3. Synthèse	317
Chapitre 9 – Le modèle MEMO et son intégration dans une chaîne de modélisations	319
1. Modélisation du vent en topographie complexe : le modèle ARIEL	321
1.1 Modélisation linéarisée	321
1.2 Modélisation du vent en topographie complexe : développement	
d'une nouvelle formulation	322
1.2.1 Equations de base	323
1.2.2 Traitement de la force de Coriolis	324
1.2.3 Changement de variables et première simplification	324
1.2.4 Nouvelles formulations des lois de conservation	325
1.2.4.1 Conservation de la masse	325
1.2.4.2 Conservation de la quantité de mouvement	325
1.2.4.3 Conservation de l'énergie totale	327
1.2.5 Système d'équations final	329
1.2.6 Adimensionnalisation des équations	329
1.3 Simulation de la turbulence atmosphérique	331
1.3.1 Modèle de type k-ε	332
1.3.2 Modèle de type LES	332
1.4 Résolution numérique	333
1.4.1 Maillage du domaine : discrétisation de l'espace et du temps	334
1.4.2 Intégration des équations	335
1.4.2.1 Étape de projection	335
1.4.2.2 Étape d'intégration	335
1.4.2.3 Étape de détermination des flux	336
1.4.3 Conditions aux limites	336
1.5 Test du modèle numérique sur des solutions analytiques	337
 1.6 Comparaison du modèle numérique avec des mesures 	
expérimentales : cas de la colline d'Askervein	338
1.6.1 Le site expérimental	338
1.6.2 Comparaison modélisation numérique / mesures in situ	340
1.6.2.1 Evolution de la vitesse de surface	340
1.6.2.2 Evolution de la direction de l'écoulement	340
1.6.2.3 Evolution de l'énergie turbulente	341
1.7 Conclusions	342
2. Modelisation du transport de neige par le vent : le modèle MEMO	343
2.1 Modele mathématique pour la couche de suspension	343

2.7.2 Le dépôt

Page 316

	Page
2.1.1 Hypothèses et mise en équations	343
2.1.2 Prise en compte de la turbulence	344
2.1.3 Conditions aux limites	346
2.1.4 Nombre de Schmidt	347
2.2 Modèle mathématique pour la couche de saltation	347
2.3 Modèle mathématique de l'érosion éolienne	348
2.4 Modèle mathématique pour le dépôt des particules	350
2.5 Évolution de la surface du manteau neigeux	351
2.6 Comparaison des résultats numériques et des résultats	
expérimentaux obtenus en soufflerie diphasique	352
2.6.1 Comparaison des profils à saturation	352
2.6.2 Évolution des profils de concentration vers la saturation	353
2.6.3 Influence de la vitesse de chute	354
2.6.4 Elux de dénôt	355
2.7 Comparaison des résultats numériques et des résultats	
evnérimentaux obtenus in situ	359
2 7 1 Description du site expérimental	359
	000
3. Intégration des modèles MEMO et ARIEL au sein d'un SIG : OLRIC	
(Outil de Localisation des Risques de Congères)	363
3.1 L'environnement de travail	364
3.2 La démarche scientifique	364
3.2.1 Fonctionnement à grande échelle : localisation des zones à risques	
de formation de congères	364
3.2.1.1 Données d'entrée géoréférencées	365
3.2.1.2 Critère géographique	366
3.2.1.3 Critère d'intensité du vent	366
3.2.1.4 Critère d'orthogonalité à la route	367
3.2.2 Fonctionnement à petite échelle : détermination de la forme des	
congères	368
3 2 2 1 Données d'entrée géoréférencées	369
3 2 2 2 Visualisation des formes de congères	370
3.2.3 Exemple d'application : l'autoroute A75	371
4. Perspectives	372
Conclusions	375
Bibliographie	377

.