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Preface

What is a crop model? ‘Snake oil’ (Passioura 1996), i.e. an impossible (and moder-
ately honest) challenge to fit the current scientific knowledge into a single framework?
A mechanistic view of plant growth and development which represent causality between
component processes and yield (Yin et al. 2004)? Robust empirical relations between
plant behaviour and the main environmental variables (Passioura 1996)? A tool for
analysing plant behaviour and its genetic variability which bypasses, but may help to
increase the knowledge about underlying mechanisms (Tardieu 2003, Hammer 2006)?
All these definitions are partly true, all are potentially misleading.

Considering the achievements of crop models is perhaps the best way to understand
what they are. STICS and other crop models have profoundly changed the vision that the
agronomic community had of the soil — plant — atmosphere system and of its interactions
with cultivation techniques. It has also changed the way agronomists design experi-
ments and test hypotheses. Important and legitimate questions such as “which is the best
sowing density for a crop?”, “is an early cultivar better than a late one?”, “what is the best
fertilisation strategy?”” have been the subject of hundreds of experiments in the 60’s and
70’s. Nobody would now imagine answering them without a model because “try it and
see” experiments may well be the worst method for answering them, due to experimental
errors and to the variability of behaviour of each genotype in different environments.
Although our current knowledge is often poor for detailed processes, the behaviour of
soil-plant-atmosphere systems is surprisingly predictable in relation to what could be
expected from the synthesis of all mechanisms involved in it (Tardieu 2003). STICS, like
other crop models, can therefore help to answer the above questions for a wide range
of conditions which could never be tested experimentally. The role of experiments has
changed, and is now to check whether experimental results, obtained in a limited number
of environmental conditions, are consistent with those of the model in a wide range of
situations to verify the credibility of the model in the studied range of environments
(Lyon et al. 2003, Corre Hellou et al. 2007). Lack of agreement between the model and
the experiments may suggest ways for improving some aspects of the model.

XI



Conceptual basis, formalisations and parametrization of the STICS crop model

Is this science or engineering (Passioura, 1996)? This lengthy debate has been largely
fruitless. The same model can be used for good or unexciting science, for good or inap-
propriate engineering. The important point is that the user is able to be critical with the
model, so that his/her judgement or decisions after using STICS will be the result of
some personal input and understanding of the model. This is the objective, hopefully
fulfilled, of this book.

Making it clear, that STICS is a tool for reasoning and not a magic wand for predic-
tion, is one of the main aims of this book. The model is by no means an exact representa-
tion of all the processes involved in a virtual experiment. It is therefore essential that the
user has access to its workings, i.e. its architecture, equations and parameters, and that
the robustness of equations is discussed and compared with that of other models. The
reader can find every single process used in the STICS model, with its equations and
parameters, and with figures which explain the meaning of equations and their conse-
quences on model outputs. This gives several possibilities to the user. Most skilled users
can go into the detail of some processes, check the consistency of hypotheses with their
own ideas, and interpret results according to this information (“I get this output with
that hypothesis, would I get a different output with this other hypothesis? ). Less skilled
users will use the book for understanding the reasoning which accompanies the equations
of a particular module. For instance the observations of Figure 5.2 and 5.3 clearly suggest
that the objective is not to compare the root systems of rape seed, corn and wheat, which
vary widely between fields, but to investigate what happens if the characteristics of the
root system change with the species or with the soil (“examples are given for 3 species.
What would be the behaviour of my favourite species in my soil?”).

STICS is based on simple processes, essentially the same as in other crop models,
but with some appreciable differences in method. This book clearly presents the basis for
computing the progression of phenological stages from temperature, the light interception
by leaves following Monteith’s equation, the transpiration following Penman Monteith’s
equation, and the water and nutrient uptakes following Gardner’s pioneering work. To my
knowledge, these fundamentals do not differ essentially from those of other models (Yin
and Van Laar 2005, Keating et al. 2003) except that the equations used in STICS have
been chosen in a more “physics-oriented” way than those of other models. In STICS, as
in any other model, things become less straightforward for simulations of growth and of
distribution of assimilates and responses to environmental stresses. The STICS group
was successful in representing complex networks of interactions without generating
scores of equations and parameters which can never be checked. Are the methods used in
STICS better than those of other models? Another book could be written to compare the
respective value of the algorithms used in different models. For most users, it is enough
to know that methods and algorithms are coarse but useful representations of reality and
that they can vary substantially between models, so it may be useful for some purposes
to compare the output of STICS with those of other models.

An important side effect of the work of the STICS group has been to provide a common
“meeting place” for scientists of several agronomic disciplines (plant science, soil
science and cropping systems), for social scientists and for people working in extension
services. This book should help to provide a bridge between scientific communities. It is
anecessary tool for scientists who use the STICS model, for agronomists who are curious
about the different topics which can be covered with crop models, and for modellers of
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different disciplines who wish to copy the methods of the STICS group. Will geneticists
and molecular physiologists join the community of plant modellers? This is a major
challenge for the years to come. Progress has been made (Hammer et al. 2006, Struik
et al. 2007, Chenu et al. 2008), but these two groups seem reluctant to employ modelling
methods (see e.g. Benfey and Mitchell-Olds 2008).

In conclusion, we have to be grateful to the authors, especially Nadine Brisson, for
carrying out the huge and difficult task of explaining the detail of all that is involved in
the STICS model.

Francois Tardieu
Frangois Tardieu is a crop scientist and an ecophysiologist who works to fill the
gap between agronomy and genetics. He was involved in projects in which crop model-

ling had an essential role. This, together with his role in scientific management in Inra
(France) gives him a wide overview of the uses and concerns of crop modelling.
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Introduction

1.1 Purpose

The aims of STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) are
similar to those of a large number of existing models (Whisler et al., 1986), while paying
attention to cropping system diversity. It is a crop model with a daily time-step and input
variables relating to climate, soil and the crop system. Its output variables relate to yield
in terms of quantity and quality and to the environment in terms of drainage and nitrate
leaching. The simulated object is the crop situation for which a physical medium and a
crop management schedule can be determined. The main simulated processes are crop
growth and development as well as the water and nitrogen balances. A full description of
crop models with their fundamental concepts is available in Brisson et al. (2005).

STICS has been developed since 1996 at INRA (French National Institute for
Agronomic Research) in collaboration with other research (CIRAD!, CEMAGREF?,
Ecole des Mines de Paris, ESA3, LSCE*) or professional (ARVALIS®, CETIOM®, CTIFL’,
ITVS, ITB?, Agrotransferts'?, etc.) and teaching institutes. For more than 10 years STICS
has been used and regularly improved thanks to a close link between development and
application, involving scientists and technicians from various disciplines.

! Centre de coopération internationale en recherche agronomique pour le développement.
2 Centre du machinisme agricole, du génie rural et des eaux et foréts.

Ecole supérieure d’agriculture d’Angers.

4 Laboratoire des sciences du climat et de I’environnement.

5 Arvalis, institut du végétal.

¢ Centre technique interprofessionnel des Oléagineux métropolitains.

7 Centre technique interprofessionnel des fruits et 1égumes.

8 Institut technique de la vigne.

9 Institut technique de la betterave.

10" Agrotransferts for the regions Poitou-Charentes and Picardie.

3
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Conceptual basis, formalisations and parametrization of the STICS crop model

When STICS began to be developed, many well-known models were available
(CERES: Ritchie and Otter, 1984; ARCWHEAT: Weir et al., 1984; EPIC: Williams
et al., 1989; SUCROS: van Keulen and Seligman, 1987, etc.) that were developed from
the pioneer works by de Wit (1978) or Duncan (1971 cited in Baker, 1980). However
new models appear regularly in the literature (Amir and Sinclair, 1991a,b; Brisson
et al., 1992a; Hunt and Pararajasingham, 1995; Kanneganti and Fick, 1991; Maas, 1993;
McMaster et al., 1991; Teittinen ef al., 1994). As Sinclair and Seligman (1996) explained,
this is because no one universal model can exist in the field of agricultural science and it
is necessary to adapt system definitions, simulated processes and model formalisations to
specific environments or to new problems (technical, genetic, environmental, etc.). These
same authors emphasize the heuristic potential of modelling, a determining element in
the development of STICS.

From a conceptual point of view, STICS is made up of a number of original parts
compared with other crop models (e.g. simulation of crop temperature, simulation of
many techniques) but most of the remaining parts are based on conventional formalisa-
tions or have been taken from existing models. Its strong points are the following:

— its “crop” generality: adaptability to various crops (wheat, maize, soybean, sorghum,
flax, grassland, tomato, beetroot, sunflower, vineyard, pea, rapeseed, banana, sugarcane,
carrot, lettuce, etc.)

— its robustness: ability to simulate various soil-climate conditions without too much
error in the outputs (Brisson ef al., 2002a) and easy availability of its soil and technical
inputs. Yet, this robusness can jeopardise accuracy on a local scale.

— its “conceptual” modularity: the possibility of adding new modules or complementing
the system description (e.g.: ammonia volatilisation, symbiotic nitrogen fixation, plant
mulch, stony soils, many organic residues, etc.). The purpose of such modularity is to
facilitate subsequent development.

Around 50 scientists of various disciplines participated in the STICS formalisations,
most of them from INRA (Institut National de la Recherche Agronomique). Thus the
model can be regarded as a synthesis of the French agronomic knowledge on the field
and crop cycle scales, which motivated this book. It presents the formalisations of the
STICS model (version 6.2), which can be considered as references used in the framework
of crop sciences, helping professionals and students in the partitioning and understanding
of the complex agronomic system. The book arrangement relies on the way the model
designs the crop-soil system functioning, each chapter being devoted to one important
function such as growth initiation, yield onset, water uptake, transformation of organic
matter etc. One chapter is devoted to the cropping system and long term simulations
and the final chapter is about the involvement of the user in terms of option choices and
parameterization.
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1.2 Overall description of the system
with its components

1.2.1 The system

STICS simulates the behaviour of the soil-crop system, in one dimension, over one
crop cycle or several successive cycles. The upper boundary of the system is the atmos-
phere, characterised by standard weather variables (radiation, minimum and maximum
temperatures, rainfall, reference evapotranspiration and possibly wind and humidity) and
the lower boundary corresponds to the soil/sub-soil interface.

Crops are generally perceived in terms of their above-ground biomass and nitrogen
content, leaf area index, and the number and biomass (and nitrogen content) of harvested
organs. Vegetative organs (leaves, stems, branches or tillers, roots) are functionally sepa-
rated in terms of radiation, water and nutrient sensors or reservoir role. Soil is described
as a sequence of horizontal layers, each of which is characterised in terms of its water
content and mineral and organic nitrogen contents. Soil and crop interact via the roots,
and these roots are defined in terms of root density distribution in the soil profile.

STICS can also simulate intercropping, i.e. two crops (annual or perennial) growing
simultaneously as a mixture, each crop developing and growing with its own rhythm
resulting from the resource partitioning. In this case the soil-plant-atmosphere system is
divided into three sub-systems at the canopy level. There is the dominant canopy and the
understorey canopy that is divided into two parts: a shaded part and a sunlit part, each
of them being defined by a light microclimate that drives the different behaviour of the
sub-systems.

1.2.2 Simulated processes

Crop growth is driven by the plant carbon accumulation (de Wit, 1978): solar radia-
tion intercepted by the foliage and then transformed into aboveground biomass that is
directed to the harvested organs during the final phase of the crop cycle. The crop
nitrogen content depends on the carbon accumulation and on the nitrogen availability
in the soil. According to the plant type, crop development is driven either by a thermal
index (degree-days), a photothermal index or a photothermal index taking into account
vernalisation. The development module is used to make the leaf area index and the roots
evolve and define the harvested organ filling phase. Water stress and nitrogen stress,
if any, reduce leaf growth and biomass accumulation. This reduction is based on stress
indices that are calculated in water and nitrogen balance modules. Other stresses such
as waterlogging and thermal stresses (frost or high temperatures) are also taken into
account.

Particular emphasis is placed on the effect of crop management on the dynamics
of the soil-crop-microclimate system, knowing that crop peculiarities influence both
ecophysiology and crop management (e.g. accounting for the various forms of forage
cutting, fertiliser composition, plastic or crop residue mulching, etc.).
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Conceptual basis, formalisations and parametrization of the STICS crop model

1.2.3 Modules and options

‘ Management and crop environment‘

Water balance

‘ Nitrogen transformations ‘

A\

Root
growth ‘ Transfers of heat, water and nitrates

Figure 1.1. The main modules of the STICS crop model.

The STICS model is organised into modules (Figure 1.1), with each module composed
of sub-modules dealing with specific mechanisms. A first set of three modules deals with
the ecophysiology of above-ground plant parts (phenology, shoot growth, yield forma-
tion). A second set of four modules deals with how the soil responds in interaction with
underground plant parts (root growth, water balance, nitrogen balance, soil transfers).
The crop management module deals with the interactions between the applied techniques
and the soil-crop system. The microclimate module simulates the combined effects of
climate and water balance on the temperature and air humidity within the canopy.

Within each module, there are options that can be used to extend the scope with which
STICS can be applied to various crop systems. These options relate to ecophysiology and
to crop management, for example:

— competition for assimilate between vegetative organs and reserve organs (hereafter
referred to as trophic competition);

— considering the geometry of the canopy when simulating radiation interception;

— the description of the root density profile;

— using a resistive approach to estimate the evaporative demand by plants;

— the mowing of forage crops;

— plant or plastic mulching under vegetation.

Certain options depend on data availability. For example, the use of a resistive model
is based on availability of additional climatic driving variables: wind and air humidity.
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